3.2.28 \(\int f^{a+b x+c x^2} \cos (d+f x^2) \, dx\) [128]

3.2.28.1 Optimal result
3.2.28.2 Mathematica [A] (verified)
3.2.28.3 Rubi [A] (verified)
3.2.28.4 Maple [A] (verified)
3.2.28.5 Fricas [B] (verification not implemented)
3.2.28.6 Sympy [F]
3.2.28.7 Maxima [B] (verification not implemented)
3.2.28.8 Giac [F]
3.2.28.9 Mupad [F(-1)]

3.2.28.1 Optimal result

Integrand size = 21, antiderivative size = 189 \[ \int f^{a+b x+c x^2} \cos \left (d+f x^2\right ) \, dx=-\frac {e^{-i d+\frac {b^2 \log ^2(f)}{4 i f-4 c \log (f)}} f^a \sqrt {\pi } \text {erf}\left (\frac {b \log (f)-2 x (i f-c \log (f))}{2 \sqrt {i f-c \log (f)}}\right )}{4 \sqrt {i f-c \log (f)}}+\frac {e^{i d-\frac {b^2 \log ^2(f)}{4 i f+4 c \log (f)}} f^a \sqrt {\pi } \text {erfi}\left (\frac {b \log (f)+2 x (i f+c \log (f))}{2 \sqrt {i f+c \log (f)}}\right )}{4 \sqrt {i f+c \log (f)}} \]

output
-1/4*exp(-I*d+b^2*ln(f)^2/(4*I*f-4*c*ln(f)))*f^a*erf(1/2*(b*ln(f)-2*x*(I*f 
-c*ln(f)))/(I*f-c*ln(f))^(1/2))*Pi^(1/2)/(I*f-c*ln(f))^(1/2)+1/4*exp(I*d-b 
^2*ln(f)^2/(4*I*f+4*c*ln(f)))*f^a*erfi(1/2*(b*ln(f)+2*x*(I*f+c*ln(f)))/(I* 
f+c*ln(f))^(1/2))*Pi^(1/2)/(I*f+c*ln(f))^(1/2)
 
3.2.28.2 Mathematica [A] (verified)

Time = 0.73 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.22 \[ \int f^{a+b x+c x^2} \cos \left (d+f x^2\right ) \, dx=-\frac {(-1)^{3/4} e^{\frac {b^2 \log ^2(f)}{4 i f-4 c \log (f)}} f^a \sqrt {\pi } \left (\text {erfi}\left (\frac {(-1)^{3/4} (2 f x+i (b+2 c x) \log (f))}{2 \sqrt {f+i c \log (f)}}\right ) (f-i c \log (f)) \sqrt {f+i c \log (f)} (-i \cos (d)-\sin (d))+e^{\frac {i b^2 f \log ^2(f)}{2 \left (f^2+c^2 \log ^2(f)\right )}} \text {erfi}\left (\frac {\sqrt [4]{-1} (2 f x-i (b+2 c x) \log (f))}{2 \sqrt {f-i c \log (f)}}\right ) \sqrt {f-i c \log (f)} (f+i c \log (f)) (\cos (d)+i \sin (d))\right )}{4 \left (f^2+c^2 \log ^2(f)\right )} \]

input
Integrate[f^(a + b*x + c*x^2)*Cos[d + f*x^2],x]
 
output
-1/4*((-1)^(3/4)*E^((b^2*Log[f]^2)/((4*I)*f - 4*c*Log[f]))*f^a*Sqrt[Pi]*(E 
rfi[((-1)^(3/4)*(2*f*x + I*(b + 2*c*x)*Log[f]))/(2*Sqrt[f + I*c*Log[f]])]* 
(f - I*c*Log[f])*Sqrt[f + I*c*Log[f]]*((-I)*Cos[d] - Sin[d]) + E^(((I/2)*b 
^2*f*Log[f]^2)/(f^2 + c^2*Log[f]^2))*Erfi[((-1)^(1/4)*(2*f*x - I*(b + 2*c* 
x)*Log[f]))/(2*Sqrt[f - I*c*Log[f]])]*Sqrt[f - I*c*Log[f]]*(f + I*c*Log[f] 
)*(Cos[d] + I*Sin[d])))/(f^2 + c^2*Log[f]^2)
 
3.2.28.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {4976, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos \left (d+f x^2\right ) f^{a+b x+c x^2} \, dx\)

\(\Big \downarrow \) 4976

\(\displaystyle \int \left (\frac {1}{2} e^{-i d-i f x^2} f^{a+b x+c x^2}+\frac {1}{2} e^{i d+i f x^2} f^{a+b x+c x^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {\pi } f^a e^{i d-\frac {b^2 \log ^2(f)}{4 c \log (f)+4 i f}} \text {erfi}\left (\frac {b \log (f)+2 x (c \log (f)+i f)}{2 \sqrt {c \log (f)+i f}}\right )}{4 \sqrt {c \log (f)+i f}}-\frac {\sqrt {\pi } f^a e^{\frac {b^2 \log ^2(f)}{-4 c \log (f)+4 i f}-i d} \text {erf}\left (\frac {b \log (f)-2 x (-c \log (f)+i f)}{2 \sqrt {-c \log (f)+i f}}\right )}{4 \sqrt {-c \log (f)+i f}}\)

input
Int[f^(a + b*x + c*x^2)*Cos[d + f*x^2],x]
 
output
-1/4*(E^((-I)*d + (b^2*Log[f]^2)/((4*I)*f - 4*c*Log[f]))*f^a*Sqrt[Pi]*Erf[ 
(b*Log[f] - 2*x*(I*f - c*Log[f]))/(2*Sqrt[I*f - c*Log[f]])])/Sqrt[I*f - c* 
Log[f]] + (E^(I*d - (b^2*Log[f]^2)/((4*I)*f + 4*c*Log[f]))*f^a*Sqrt[Pi]*Er 
fi[(b*Log[f] + 2*x*(I*f + c*Log[f]))/(2*Sqrt[I*f + c*Log[f]])])/(4*Sqrt[I* 
f + c*Log[f]])
 

3.2.28.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 4976
Int[Cos[v_]^(n_.)*(F_)^(u_), x_Symbol] :> Int[ExpandTrigToExp[F^u, Cos[v]^n 
, x], x] /; FreeQ[F, x] && (LinearQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, 
 x] || PolyQ[v, x, 2]) && IGtQ[n, 0]
 
3.2.28.4 Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.94

method result size
risch \(-\frac {\sqrt {\pi }\, f^{a} {\mathrm e}^{-\frac {\ln \left (f \right )^{2} b^{2}+4 i d \ln \left (f \right ) c +4 d f}{4 \left (c \ln \left (f \right )-i f \right )}} \operatorname {erf}\left (-x \sqrt {i f -c \ln \left (f \right )}+\frac {\ln \left (f \right ) b}{2 \sqrt {i f -c \ln \left (f \right )}}\right )}{4 \sqrt {i f -c \ln \left (f \right )}}-\frac {\sqrt {\pi }\, f^{a} {\mathrm e}^{-\frac {\ln \left (f \right )^{2} b^{2}-4 i d \ln \left (f \right ) c +4 d f}{4 \left (i f +c \ln \left (f \right )\right )}} \operatorname {erf}\left (-\sqrt {-c \ln \left (f \right )-i f}\, x +\frac {\ln \left (f \right ) b}{2 \sqrt {-c \ln \left (f \right )-i f}}\right )}{4 \sqrt {-c \ln \left (f \right )-i f}}\) \(178\)

input
int(f^(c*x^2+b*x+a)*cos(f*x^2+d),x,method=_RETURNVERBOSE)
 
output
-1/4*Pi^(1/2)*f^a*exp(-1/4*(ln(f)^2*b^2+4*I*d*ln(f)*c+4*d*f)/(c*ln(f)-I*f) 
)/(I*f-c*ln(f))^(1/2)*erf(-x*(I*f-c*ln(f))^(1/2)+1/2*ln(f)*b/(I*f-c*ln(f)) 
^(1/2))-1/4*Pi^(1/2)*f^a*exp(-1/4*(ln(f)^2*b^2-4*I*d*ln(f)*c+4*d*f)/(I*f+c 
*ln(f)))/(-c*ln(f)-I*f)^(1/2)*erf(-(-c*ln(f)-I*f)^(1/2)*x+1/2*ln(f)*b/(-c* 
ln(f)-I*f)^(1/2))
 
3.2.28.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 311 vs. \(2 (145) = 290\).

Time = 0.26 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.65 \[ \int f^{a+b x+c x^2} \cos \left (d+f x^2\right ) \, dx=-\frac {\sqrt {\pi } {\left (c \log \left (f\right ) - i \, f\right )} \sqrt {-c \log \left (f\right ) - i \, f} \operatorname {erf}\left (\frac {{\left (2 \, f^{2} x - i \, b f \log \left (f\right ) + {\left (2 \, c^{2} x + b c\right )} \log \left (f\right )^{2}\right )} \sqrt {-c \log \left (f\right ) - i \, f}}{2 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right ) e^{\left (\frac {4 \, a f^{2} \log \left (f\right ) - {\left (b^{2} c - 4 \, a c^{2}\right )} \log \left (f\right )^{3} + 4 i \, d f^{2} + {\left (4 i \, c^{2} d + i \, b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )} + \sqrt {\pi } {\left (c \log \left (f\right ) + i \, f\right )} \sqrt {-c \log \left (f\right ) + i \, f} \operatorname {erf}\left (\frac {{\left (2 \, f^{2} x + i \, b f \log \left (f\right ) + {\left (2 \, c^{2} x + b c\right )} \log \left (f\right )^{2}\right )} \sqrt {-c \log \left (f\right ) + i \, f}}{2 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right ) e^{\left (\frac {4 \, a f^{2} \log \left (f\right ) - {\left (b^{2} c - 4 \, a c^{2}\right )} \log \left (f\right )^{3} - 4 i \, d f^{2} + {\left (-4 i \, c^{2} d - i \, b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}} \]

input
integrate(f^(c*x^2+b*x+a)*cos(f*x^2+d),x, algorithm="fricas")
 
output
-1/4*(sqrt(pi)*(c*log(f) - I*f)*sqrt(-c*log(f) - I*f)*erf(1/2*(2*f^2*x - I 
*b*f*log(f) + (2*c^2*x + b*c)*log(f)^2)*sqrt(-c*log(f) - I*f)/(c^2*log(f)^ 
2 + f^2))*e^(1/4*(4*a*f^2*log(f) - (b^2*c - 4*a*c^2)*log(f)^3 + 4*I*d*f^2 
+ (4*I*c^2*d + I*b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)) + sqrt(pi)*(c*log( 
f) + I*f)*sqrt(-c*log(f) + I*f)*erf(1/2*(2*f^2*x + I*b*f*log(f) + (2*c^2*x 
 + b*c)*log(f)^2)*sqrt(-c*log(f) + I*f)/(c^2*log(f)^2 + f^2))*e^(1/4*(4*a* 
f^2*log(f) - (b^2*c - 4*a*c^2)*log(f)^3 - 4*I*d*f^2 + (-4*I*c^2*d - I*b^2* 
f)*log(f)^2)/(c^2*log(f)^2 + f^2)))/(c^2*log(f)^2 + f^2)
 
3.2.28.6 Sympy [F]

\[ \int f^{a+b x+c x^2} \cos \left (d+f x^2\right ) \, dx=\int f^{a + b x + c x^{2}} \cos {\left (d + f x^{2} \right )}\, dx \]

input
integrate(f**(c*x**2+b*x+a)*cos(f*x**2+d),x)
 
output
Integral(f**(a + b*x + c*x**2)*cos(d + f*x**2), x)
 
3.2.28.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 648 vs. \(2 (145) = 290\).

Time = 0.25 (sec) , antiderivative size = 648, normalized size of antiderivative = 3.43 \[ \int f^{a+b x+c x^2} \cos \left (d+f x^2\right ) \, dx=\frac {\sqrt {\pi } \sqrt {2 \, c^{2} \log \left (f\right )^{2} + 2 \, f^{2}} {\left ({\left (i \, f^{a} \cos \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right ) + f^{a} \sin \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )\right )} \operatorname {erf}\left (\frac {2 \, {\left (c \log \left (f\right ) - i \, f\right )} x + b \log \left (f\right )}{2 \, \sqrt {-c \log \left (f\right ) + i \, f}}\right ) + {\left (-i \, f^{a} \cos \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right ) + f^{a} \sin \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )\right )} \operatorname {erf}\left (\frac {2 \, {\left (c \log \left (f\right ) + i \, f\right )} x + b \log \left (f\right )}{2 \, \sqrt {-c \log \left (f\right ) - i \, f}}\right )\right )} \sqrt {c \log \left (f\right ) + \sqrt {c^{2} \log \left (f\right )^{2} + f^{2}}} - \sqrt {\pi } \sqrt {2 \, c^{2} \log \left (f\right )^{2} + 2 \, f^{2}} {\left ({\left (f^{a} \cos \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right ) - i \, f^{a} \sin \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )\right )} \operatorname {erf}\left (\frac {2 \, {\left (c \log \left (f\right ) - i \, f\right )} x + b \log \left (f\right )}{2 \, \sqrt {-c \log \left (f\right ) + i \, f}}\right ) + {\left (f^{a} \cos \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right ) + i \, f^{a} \sin \left (\frac {4 \, d f^{2} + {\left (4 \, c^{2} d + b^{2} f\right )} \log \left (f\right )^{2}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )\right )} \operatorname {erf}\left (\frac {2 \, {\left (c \log \left (f\right ) + i \, f\right )} x + b \log \left (f\right )}{2 \, \sqrt {-c \log \left (f\right ) - i \, f}}\right )\right )} \sqrt {-c \log \left (f\right ) + \sqrt {c^{2} \log \left (f\right )^{2} + f^{2}}}}{8 \, {\left (c^{2} e^{\left (\frac {b^{2} c \log \left (f\right )^{3}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )} \log \left (f\right )^{2} + f^{2} e^{\left (\frac {b^{2} c \log \left (f\right )^{3}}{4 \, {\left (c^{2} \log \left (f\right )^{2} + f^{2}\right )}}\right )}\right )}} \]

input
integrate(f^(c*x^2+b*x+a)*cos(f*x^2+d),x, algorithm="maxima")
 
output
1/8*(sqrt(pi)*sqrt(2*c^2*log(f)^2 + 2*f^2)*((I*f^a*cos(1/4*(4*d*f^2 + (4*c 
^2*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)) + f^a*sin(1/4*(4*d*f^2 + (4* 
c^2*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)))*erf(1/2*(2*(c*log(f) - I*f 
)*x + b*log(f))/sqrt(-c*log(f) + I*f)) + (-I*f^a*cos(1/4*(4*d*f^2 + (4*c^2 
*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)) + f^a*sin(1/4*(4*d*f^2 + (4*c^ 
2*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)))*erf(1/2*(2*(c*log(f) + I*f)* 
x + b*log(f))/sqrt(-c*log(f) - I*f)))*sqrt(c*log(f) + sqrt(c^2*log(f)^2 + 
f^2)) - sqrt(pi)*sqrt(2*c^2*log(f)^2 + 2*f^2)*((f^a*cos(1/4*(4*d*f^2 + (4* 
c^2*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)) - I*f^a*sin(1/4*(4*d*f^2 + 
(4*c^2*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)))*erf(1/2*(2*(c*log(f) - 
I*f)*x + b*log(f))/sqrt(-c*log(f) + I*f)) + (f^a*cos(1/4*(4*d*f^2 + (4*c^2 
*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)) + I*f^a*sin(1/4*(4*d*f^2 + (4* 
c^2*d + b^2*f)*log(f)^2)/(c^2*log(f)^2 + f^2)))*erf(1/2*(2*(c*log(f) + I*f 
)*x + b*log(f))/sqrt(-c*log(f) - I*f)))*sqrt(-c*log(f) + sqrt(c^2*log(f)^2 
 + f^2)))/(c^2*e^(1/4*b^2*c*log(f)^3/(c^2*log(f)^2 + f^2))*log(f)^2 + f^2* 
e^(1/4*b^2*c*log(f)^3/(c^2*log(f)^2 + f^2)))
 
3.2.28.8 Giac [F]

\[ \int f^{a+b x+c x^2} \cos \left (d+f x^2\right ) \, dx=\int { f^{c x^{2} + b x + a} \cos \left (f x^{2} + d\right ) \,d x } \]

input
integrate(f^(c*x^2+b*x+a)*cos(f*x^2+d),x, algorithm="giac")
 
output
integrate(f^(c*x^2 + b*x + a)*cos(f*x^2 + d), x)
 
3.2.28.9 Mupad [F(-1)]

Timed out. \[ \int f^{a+b x+c x^2} \cos \left (d+f x^2\right ) \, dx=\int f^{c\,x^2+b\,x+a}\,\cos \left (f\,x^2+d\right ) \,d x \]

input
int(f^(a + b*x + c*x^2)*cos(d + f*x^2),x)
 
output
int(f^(a + b*x + c*x^2)*cos(d + f*x^2), x)